Resumen
Los procesos cognitivos y metodologías de enseñanza relacionadas a la arquitectura y disciplinas afines frecuentemente encuentran obstáculos al enfrentarse a la utilización, comprensión, aplicación y desarrollo de materiales y tecnologías alternativas, que conllevan innovación y estrategias diferentes a las convencionales.
Bajo este marco, el currículo de los programas educativos tiene que actualizarse constante y continuamente y adecuar estrategias de enseñanza que permitan la comprensión de diversos obstáculos y retos para lograr incorporar exitosamente dichos materiales y tecnologías alternativas al producto arquitectónico congruente con el aspecto funcional, social, ambiental y comercial. Dichas estrategias van desde seminarios prácticos experimentales, procesos de conceptualización y desarrollo, hasta la investigación y realización de pruebas bajo métodos científicos que deriven en lograr incorporar las tecnologías y materiales alternativos al quehacer arquitectónico.
El siguiente artículo expone casos de estudio que involucraron modelos de enseñanza a través del desarrollo de diversos objetos y elementos arquitectónicos aplicados dentro del plan de estudios de la licenciatura de arquitectura de la Benemérita Universidad Autónoma de Puebla (BUAP) dentro de diversos programas educativos y proyectos de investigación del mapa curricular, y se reflexiona sobre los métodos y estrategias y nuevos enfoques de enseñanza derivados de los resultados obtenidos.
Citas
Cetiner, I. & Shea, A. D. (2018). Wood Waste as an Alternative Thermal Insulation for Buildings. En Energy and Buildings, 168, 374-384. doi:https://doi.org/10.1016/j.enbuild.2018.03.019
Crawford, R. (2011). Life cycle assessment in the built environment: Routledge.
Day, C. (2017). Places of the soul: Architecture and environmental design as a healing art: Routledge.
Dissanayake, D. M. K. W.; Jayasinghe, C.; & Jayasinghe, M. T. R. (2017). A Comparative Embodied Energy Analysis of a House with Recycled Expanded Polystyrene (EPS) Based Foam Concrete Wall Panels. En Energy and Buildings, 135, 85-94. doi:https://doi.org/10.1016/j.enbuild.2016.11.044
Evans, I.; Smiley, L.; & Smith, M. G. (2002). The hand-sculpted house: a philosophical and practical guide to building a cob cottage: Chelsea Green Publishing.
Farrar, T. (2008). Architecture in Africa, with Special Reference to Indigenous Akan Building Construction. En Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures editor: Helaine Selin. Springer Dordrecht, Second edition (pp. 199-203).
Fisher, T. (2016). Designing Our Way to a Better World: University of Minnesota Press.
Franzato, C. (2017). The relationship between Strategic Design and Metadesign as Defined by the Levels of Knowledge of Design. En Strategic Design Research Journal, 10(2), 134-143. doi:10.4013/sdrj.2017.102.06
George, T.; Deshpande, V. S.; & Wadley, H. N. G. (2013). Mechanical Response of Carbon Fiber Composite Sandwich Panels With Pyramidal Truss Cores. En Composites Part A: Applied Science and Manufacturing, 47, 31-40. doi:https://doi.org/10.1016/j.compositesa.2012.11.011
Halperin, C. T. (2008). Classic Maya Textile Production: Insights from Motul de San José, Peten, Guatemala. En Ancient Mesoamerica, 19(1), 111-125. doi:10.1017/S0956536108000230
Harari, Y. N. (2014). Sapiens: A brief history of humankind: Random House.
Jeanjean, A.; Olives, R.; & Py, X. (2013). Selection Criteria of Thermal Mass Materials for Low-Energy Building Construction Applied to Conventional and Alternative Materials. en Energy and Buildings, 63, 36-48. doi:https://doi.org/10.1016/j.enbuild.2013.03.047
Jimenez, J. R.; Ayuso, J., Galvin, A. P.; Lopez, M.; & Agrela, F. (2012). Use of Mixed Recycled Aggregates with a Low Embodied Energy from Non-Selected CDW in Unpaved Rural Roads. En Construction and Building Materials, 34, 34.
Kahn, L. (2004). Home work: handbuilt shelter: Shelter Publications.
Kim, S.; Kim, H.-J.; & Park, J. C. (2009). Application of Recycled Paper Sludge and Biomass Materials in Manufacture of Green Composite Pallet. En Resources, Conservation and Recycling, 53(12), 674-679. doi:https://doi.org/10.1016/j.resconrec.2009.04.021
Langdon, R. (2001). The Bamboo Raft as a Key to the Introduction of the Sweet Potato in Prehistoric Polynesia. En The Journal of Pacific History, 36(1), 51-76.
McDonough, W.; & Braungart, M. (2010). Cradle to cradle: Remaking the way we make things: North point press.
Minke, G.; & Mahlke, F. (2005). Building with straw: design and technology of a sustainable architecture: Birkhauser.
Minke, G. (2016). Building with Bamboo : Design and Technology of a Sustainable Architecture, Second and Revised Edition. Basel/Berlin/Boston, SWITZERLAND: Walter de Gruyter GmbH.
Nair, S.; Archila, S.; & Hastorf, C. A. (2018). The Lost Half of Andean Architecture: Eighteenth-Century Roofing Traditions and Environmental Use at Chinchero, Peru. En Latin American Antiquity, 29(2), 222-238. doi:http://dx.doi.org/10.1017/laq.2018.4
Parsons, J. J. (1991). Giant American Bamboo in the Vernacular Architecture of Colombia and Ecuador. En Geographical Review, 81(2), 131-152. doi:10.2307/215979
Ramesh, S. (2012). Appraisal of Vernacular Building Materials and Alternative Technologies for Roofing and Terracing Options of Embodied Energy in Buildings. En Energy Procedia, 14, 1843-1848. doi:https://doi.org/10.1016/j.egypro.2011.12.1177
Ricciardi, P.; Belloni, E.; & Cotana, F. (2014). Innovative Panels with Recycled Materials: Thermal and Acoustic Performance and Life Cycle Assessment. En Applied Energy, 134, 150-162. doi:https://doi.org/10.1016/j.apenergy.2014.07.112
Reddy, B. V.; & Jagadish, K. J. E. (2003). Embodied Energy of Common and Alternative Building Materials and Technologies. En Energy and Buildings 35(2), 129-137.
Simonen, K. (2014). Life cycle assessment: Routledge.
Smith, C. E. (1965). Plant Fibers and Civilization— Cotton, a Case in Point. En Economic Botany, 19(1), 71-82. doi:10.1007/BF02971190
Steen, A. S.; Steen, B.; & Bainbridge, D. (1994). The straw bale house: Chelsea Green Publishing.
Sweet, F. (1999). MetaDesign: design from the word up. London: Thames & Hudson.
Tabarev, A. V.; & Kanomata, Y. (2015). “Tropical Package”: Peculiarities of the Lithic Industries of the Most Ancient Cultures, Coastal Ecuador, Pacific Basin. En Archaeology, Ethnology and Anthropology of Eurasia, 43(3), 64-76. doi:https://doi.org/10.1016/j.aeae.2015.11.007
Velez, S., von Vegesack, A.; & Kries, M. (2000). Grow your own house: Simón Vélez und die Bambusarchitektur: Vitra Design Stiftung.
Villegas, M. (2003). New bamboo : architecture and design. Bogotá: Villegas Editores.
Wang, J. S.; Demartino, C.; Xiao, Y.; & Li, Y. Y. (2018). Thermal Insulation Performance of Bamboo and Wood-Based Shear Walls in Light-Frame Buildings. En Energy and Buildings, 168, 167-179. doi:https://doi.org/10.1016/j.enbuild.2018.03.017
Wijayasundara, M.; Crawford, R. H.; & Mendis, P. (2017). Comparative Assessment of Embodied Energy of Recycled Aggregate Concrete. En Journal of Cleaner Production, 152, 406-419. doi:https://doi.org/10.1016/j.jclepro.2017.03.118
Woolley, T.; Kimmins, S.; Harrison, R.; & Harrison, P. (2002). Green building Handbook: Volume 1: A guide to building products and their impact on the environment: Routledge.
Woolley, T.; & Kimmins, S. (2003). Green Building Handbook: Volume 2: A Guide to Building Products and their Impact on the Environment: Routledge.
Xhauflair, H.; Pawlik, A.; Gaillard, C.; Forestier, H.; Vitales, T. J.; Callado, J. R.; & Dizon, E. (2016). Characterisation of the Use-Wear Resulting from Bamboo Working and its Importance to Address the Hypothesis of the Existence of a Bamboo Industry in Prehistoric Southeast Asia. En Quaternary International, 416, 95-125. doi:https://doi.org/10.1016/j.quaint.2015.11.007